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Bare Gold
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PEG (resists protein adsorption)

Figure 1. Fabrication scheme for the construction of multi-element DNA arravs. A clean gold surface 1s reacted with the amine-terminated alkanethiol
MUAM., and subsequently reacted with Fmoc-NHS to create a hydrophobic surface. This surface 15 then exposed to UV radiation through a quartz
mask and rinsed with solvent to remove the MUAM+Fmoc from specific areas of the surface, leaving bare gold pads. These bare gold areas on
the sample surface are filled in with MUAM. resulting in an array of MUAM pads surrounded by a hyvdrophobic Fmoc background. Solutions of
DNA are then delivered by pipet onto the specific array locations and are covalently bound to the surface via the bifunctional linker SSMCC. In
the final two steps, the Fmoc-ternunal groups on the array background are removed and replaced by PEG groups which prohibit the nonspecific
binding of analyte proteins to the background.
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Figure 2. Surface reaction scheme showing the steps involved i the
reversible modification of the array background. (Step 2) The starting
anune-terminated alkanethiol surface (MUAM) 1s reacted with the
Fmoc-NHS protecting group to form a carbamate linkage thus creating
a hydrophobic Fmoc-terminated surface. (Step 6) After DNA im-
mobilization (see Figure 3), the hydrophobic Fmoc group 1s removed
from the surface with a basic secondary amine, resulting in the refumn
of the original MUAM surface. (Step 7) In the final array fabrication
step, the deprotected MUAM 15 reacted with PEG-NHS to form an
amide bond that covalently attaches PEG to the array surface.
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Figure 3. Surface reaction scheme showing the immobilization of thiol-
terminated DNA to the array surface. In Step 5 of the DNA array
fabrication, the heterobifunctional linker SSMCC 1s used to attach 5'-
thiol modified oligonucleotide sequences to reactive pads of MUAM.
This linker contains an NHSS ester functionality (reactive toward
amines) and a maleimde functionality (reactive toward thiols). The
surface 1s first exposed to a solution of the linker, whereby the NHSS
ester end of the molecule reacts with the MUAM surface. Excess linker
15 rmsed away and the array surface 15 then spotted with 5'-thiol-
modified DNA that reacts with the maleimde groups forming a covalent
bond to the surface monolayer.

J Am. Chem. Soc. 1999, 12], 8044—8051
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Scheme 2.2 Reagents for derivatization of glass 5 HE-APTS = his{hydroxyethyl)aminopropyltrieth-
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Biotin-Streptavidin
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Figura 2.3 Schematic respresentation of a steptavidin sensor surface assembled on a
reactinin-contralled biatinylated S48 [28].
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Amine Reactive Labeling
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Sulfhydryl Labeling
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N-hydroxysuccinimide (NHS)

Scheme 2.6 Surface coupling reaction of NHS-esters with the amino residues of the
side-chains of polypeptides ((ysine units. &, protein,
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Glucose Sensor
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hCG Immunoassay
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Chromatography

Protein mixture is added
to column containing
cross-linked polymer,

Protein molecules separate — 71—
by size; larger molecules

pass more freely, appearing o

in the earlier fractions. '

COLUMN CHROMATOGRAPHY

Proteing are oftan fractionated by colurmn chromatography. A mixture of proteing in
solution is applied to the top of 3 eylindrical column filled with a permeable solid matrix
immarsad in solvent. A large amount of solvant is than pumpad through the column.
Because different protaing are retarded 1o different extents by their interaction with the
matrix, thay can be collected separately as thay flow out from the bottom. According 1o
the choice of matrix, proteins can be separated according to their charge, hydrophobicity,

size, or ability to bind to particular chemical groups (see balow).
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Nanomaterials for Biodiagnostic

* Nucleic Acid
— Genetic information for identification
— Diseases, bacterium, virus, pathogen
— PCR with molecular fluorophore, State of the Art
— Expansive, Non-portable, Non-multiplexing

 Proteins

— Cancers and diseases, unusual high concentration of
marker

— ELISA (~pM) with molecular fluorophore
— No PCR version



ELISA (Enzyme-Linked Immunosorbent Assay)

Is a biochemical technique used mainly in immunology to detect the
presence of an antibody or an antigen in a sample. It utilizes two antibodies,
one of which is specific to the antigen and the other of which is coupled to an
enzyme. This second antibody gives the assay its "enzyme-linked" name,
and will cause a chromogenic or fluorogenic substrate to produce a signal.
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Why Nanomaterials?

 Molecular fluorophores
— Limited spectral response
— photostability

 Nanomaterials
— Small size (1-100 nm)
— Chemically tailorable physical properties
— Unusual target binding properties
— Structure robustness



Tailorable Physical Properties
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=100 am —100 rvm =50 nm =100 nm ~&0 nm =40 nm

R 200nm (same for all the images)

Figure 1. Sizes, shapes, and compositions of metal nanoparticles can be systematically varied to produce materials with
distinet light-scattering properties.
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Colorimetric Detection of DNA
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Figure 2. In the presence of complementary target DNA,
oligonucleotide-functionalized gold nanoparticles will ag-
oregate (A), resulting in a change of solution color from
red to blue (B). The aggregation process can be monitored
using UV—vis spectroscopy or simply by spotting the
solution on a silica support (C). (Reprinted with permission
from Science (http:/www.aaas.org), ref 29. Copyright 1997
American Association for the Advancement of Science.)



A DNA-based method for
rationally assembling
nanoparticles into
macroscopic materials

Chad A. Mirkin, Robert L. Letsinger, Robert C. Mucic
& James J. Storhoff

Au nanoparticles

O
Modification with . - Modification with
3'-thiol-TACCGTTG-5' o Ta 5'-AGTCGTT I-3'-thiol
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FIG. 2 Cuvettes with the Au colloids and the four DNA strands responsible
for the assembly process. Left cuvette, at 80 °C with DNA-modified colloids
in the unhybridized state; centre, after cooling to room temperature but
before the precipitate settles; and right, after the polymeric precipitate
settles to the bottom of the cuvette. Heating either of these cool solutions
results in the reformation of the DNA-modified colloids in the unhybridized
state (shown in the left cuvette).
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Selective Colorimetric Detection of

Polynucleotides Based on the Distance-Dependent
Optical Properties of Gold Nanoparticles

Robert Elghanian, James J. Storhoff, Robert C. Mucic,
Robert L. Letsinger,”

o T
l n Polynucleotide
targets

Fig. 1. Schematic representation of the concept
for generating aggregates signaling hybridization
of nanoparticle-oligonuclectide conjugates with
cligonuclecticde target molecules. The nanopar-
ticles and the oligonuclectide interconnacts are
not drawn to scale, and the number of cligomers
per particle is believed to be much larger than
depicted.
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Fig. 2. Mearcaptoalkyloligonuclectide-modified
13-nm Au particles and polynuclectide targets
used for examining the selectivity of the nanopar-
ticle-based colorimetric polynucleotide detection
system. (A) Complementary target; (B) probes
without the target; (C) a half-complementary tar-
get; (D) a 6-bp deletion; (E) a 1-bp mismatch; and
(F) a 2-bp mismatch. For the sake of clarity, only
two particles are shown; in reality a polymeric ag-
gregate with many paricles is formed. Dashed
lines represent flexible spacer portions of the mer-
captoakyloligonuclectide strands bound to the
nanocparticles; note that these spacers, becauss
of their noncomplemeantary nature, do not partic-
ipate in hybridization. The full sequences for the
twio probes, 1 and 2, which bind to targets 3
through 7, are

1-5"3H-(CHale- [CTA—ATC—CGC—ACA-G]
[CO-TAT-CGA- CCA TGC-T]

probe

2-5'SH-(CH, )¢ [ATG-GCAACT-ATAC]
[GC-GCT-AGA-GTC-GTT-T]

probe



Fig. 3. (A} Comlparisclz-nlof A T 55.0°C [B
the thermal dissociation "

curves for complexes of
mercaptoalkyloligonucleo-
tide-modified Au nanopar-
ticles [(black circles) and
mercaptoalkyloligonucleo-
tides without Au nancpar-
ticles (red squares) with the
complementary target, 3, in
hybridization buffer (0.1 M
NaCl, 10 mM phosphate
buffer, pH 7.0). Far the first
sat (black circles), a mixture
of 150 pl of each colloid T T y y v T "
conjugate and 3 pl of the 10 20 30 40 50 60 70
target oligonucleotide in hy- Temperature (°C)
bridization buffer (0.1 M

MNaCl, 10 mM phosphate, pH 7.0) was frazen at the temperature of dry ice, kept for 5 min, thawed over
a period of 15 min, and diluted to 1.0 ml with buffer (final target concentration, 0.02 pM). The
absorbance was measured at 1-min intervals with a temperature increase of 1°C per minuta.
The increase in absarption at 260 nm [A.eq) was ~0.2 absorption units (AL). In the absence of the
aligonucleotide targets, the absorbance of the nanoparticles did not increase with increasing
temperature. For the second set, the mercaptoalkyloligonuclectides and complementary target
(each 0.33 pM) were equilbrated at room temperature in 1 ml of buffer, and the changes in
absarbance with temperature were monitored as before. The increasein Asggwas 0.08 ALl (Insets)
Derivative curves for each set (75). (B) Spot test showing T, (thermal transition associated with the
color change) for the Au nanoparticle probes hybridized with complementary target. A solution
prepared from 150 pl of each probe and 3 pl of the target (0.06 pM final target concentration) was
frozen for 5 min, allowed to thaw for 10 min, transferred to a 1-ml cuvette, and warmed at 58°C for
5 min in the thermally regulated cuvette chamber of the spectrophotometer. Samples (3 pl) were
transferred to a C, ; reverse phase plate with an Eppendorf pipette as the temperature of the solution
was increased incrementally 0.5°C at 5-min intervals.
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Fig. 4. Selective polynuclectide detection for the
target probes shown in Fig. 2: (A) complamantary
target; (B) no target; (C) complementary to one
probe; (D) a 6-bp deletion; (E) a 1-bp mismatch;
and (F) a 2-bp mismatch. Nanoparticle aggregates
were prepared in a 600-ul thin-walled Eppendorf
tube by addition of 1 plofa 6.6 pM oligonuclectide
target to a mixture containing 50 wl of each probe
(0.06 puM final target concentration). The mixture
was frozen (5 min) in a bath of dry ice and isopropyl
alcohol and allowed to warm to room temperature.,
Samples were then transferred to a temperature-
controlled water bath, and 3-pl aliquots were re-
moved at the indicated temperatures and spotted
ona G, , reverse phase plate.
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Figure 5. (A—(G) The spot method for polynuclectide detection which demonstrates the selectivity of the Au naneparticle based detection svstem
toward single base imperfections. The probes and comesponding polyvmmclectids targets arve listed mn Figure 2. (H) Spot test demonsirating the
detection and differenfiation by color of a polyvouclestide target in the pressnce of polvouclectides with singls base mmperfectons.
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Rapid Aggregation of Gold Nanoparticles Induced by Non-Cross-Linking
DNA Hybridization

Kae Sato, Kazuo Hosokawa, and Mizuo Maeda*
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Figure 1. Aggregation behaviors of the DINA-gold nanoparticles at vanous
WaCl concentrations at room temperature: (A) without a target DNA, (B)
with the complementary target, and (C) with a target containing a single-
base mismatch at its 5" terminus. The final concentrations of the particle,
the probe DINA | and the targets were 2.3, 500, and 500 oM, respectively.
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Figure 2. Visible spectra corresponding to Figure 1A (dotted line, no target)
and 1B (solid line, complementary target) at 0.5 M NaCl
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Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive
Detection of DNA Hybridization

Lin He, Michael D. Musick, Sheila R. Nicewarner, Frank G. Salinas, Stephen J. Benkovic,
Michael J. Natan, and Christine D. Keating*

Scheme 1. SPR Surface Assembly
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Figure 1. SPR curves of surfaces prepared in sequential steps as
illustrated in Scheme 1. a MHA-coated Au film medified with a 12-
mer oligonucleotide S1{A), after hvbridization with its complementary
24-mer target S2 (B), and followed by introduction of S3:Au conjugate
(C) to the surface. Inset: surface plasmon reflectance changes at 53.2°
for the oligonucleotide-coated Au film measured during a 60-min
exposure to 53:Au conjugates.



Scheme 2. SPR Surface Assembly mn the Digestion

Experiment
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Figure 5. Plot of normalized intensity of SPR reflectance as a function
of logarithmic concentration of the analyte 24-mer oligo (52). Each
spot represents one data pomt at the corresponding concentration. CCD
parameters: exposure time = 0.3 s 16 bat resolution. spot size = 4.5
mm in diameter. Inset: a 2-D SPR mmage of a Au surface denvatized
with 20 uL of buffer blank. 1 pM. 0.1 nM, and 10 nM 52 oligos (from
left to nght, respectively).



